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SUMMARY 
A kinetic flux-vector-splitting method has been used to solve the Euler equations for inviscid, compressible 
flow on unstructured grids. This method is derived from the Boltzmann equation and is an upwind, cell- 
centred, finite volume scheme with an explicit time-stepping procedure. The Delaunay triangulation has 
been used to generate the grids. The approach is demonstrated for three flow field simulations, namely the 
subsonic flow over a two-component high-lift aerofoil, the transonic flow over an aerofoil and the supersonic 
flow in a channel. 

KEY WORDS Inviscid compressible flow Upwind algorithm Cell centred Finite volume Unstructured grids 

1 .  INTRODUCTION 

Computational fluid dynamics applied to aeronautical flows has now progressed to a stage where 
the routine simulation of compressible, inviscid flow, represented by the Euler equations, is 
commonplace. The simulation procedure involves the discretization of the flow domain into a 
grid which consists of nodes and elements (cells) and this is then used for the numericaI 
approximation of the governing flow equations. Different approaches to grid generation have 
been adopted. Structured grids can be generated by mapping techniques using algebraic inter- 
polation' or the solution of partial differential equations.* For complicated geometries such 
techniques are applied in a multiblock decomposition of the flow d ~ m a i n . ~  Unstructured grids, 
traditionally used with the finite element method, are very flexible for use with complicated 
geometries and have been shown to be highly effective for mesh adaptivity. The advancing front 
technique4 and the Delaunay triangulation5 are two approaches which are now widely used. 

The numerical algorithms developed to solve the flow equations are diverse. Much effort has 
been expended in developing algorithms to solve partial differential equations of elliptic or 
parabolic type. 

However, the equations describing compressible flow problems are mainly of hyperbolic 
nature. For such equations discontinuities in boundary conditions are propagated as dis- 
continuities into the solution domain and discontinuities in the solution can appear even when 
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smooth boundary data are imposed. In such cases the solution at any point depends on only some 
of the data in the flow domain and is independent of the rest. Several highly successful algorithms 
have been developed to solve such problems.'-' 

One approach which has proved popular is the class of upwind methods. The strength of the 
upwind approach is its capacity to treat the discontinuities in the flow field and its ability to 
simulate directly the physics of the directional propagation of information. Examples of some of 
the commonly adopted approaches are the flux difference splitting of Roe839 and Osher" and the 
flux vector splitting of Steger and Warming' and Van Leer." Traditionally, such techniques 
have been applied on structured grids, where it is relatively easy to construct the operators 
required for the directional bias within the formulation. 

Recently, some attention has been given to the construction of upwind flow algorithms on 
unstructured me she^.'^,'^ Such an approach offers to combine the flexibility of unstructured 
meshes with the accuracy of upwind techniques. In this paper an upwind kinetic flux-vector- 
splitting (KFVS) technique is developed for use with unstructured grids. The approach is based 
upon the fact that the Euler equations of motion are the moments of the Boltzmann equation 
whenever the velocity distribution function is Maxwellian. The KFVS method is explicit, 
conservative, satisfies entropy conditions and has been combined with total-variation-dimin- 
ishing (TVD) and UNO formulations to yield accurate solutions. To demonstrate the algorithm, 
it has been combined with an unstructured grid generator based upon the Delaunay triangulation 
to simulate the subsonic flow over a two-component aerofoil, the transonic flow over an aerofoil 
and the supersonic flow in a channel. Mesh adaptivity is applied to improve the flow field 
resolution. 

2. THE KINETIC FLUX-VECTOR-SPLITTING METHOD 

2.1. Basic concepts 

is an upwind 
method for the solution of inviscid, compressible, gasdynamic problems. It is based on the fact 
that the Euler equations of fluid mechanics can be obtained by taking moments of the Boltzmann 
equation with a Maxwellian velocity distribution function.'5,19-2' 

The kinetic flux-vector-splitting (KFVS) method of Mandal and Deshpande' 

The Boltzmann equation comes from the kinetic theory of gases and is given by 

where f is the velocity distribution function which gives the number density in phase space of 
molecules with position x and velocity v at time t. The right-hand side of the equation represents a 
collision term which vanishes in the Euler limit. The Maxwellian distribution in two dimensions is 
given by 

- p(ul - u1 )z - p(v2 - u2)2 

where j= 1/2RT, p is the mass density, T is the temperature, R is the gas constant per unit mass, 
v = ( u l ,  is the molecular velocity vector, u=(ulr  u ~ ) ~  is the fluid velocity vector, I is the 
internal energy variable corresponding to non-translational degrees of freedom (needed to force 
the given value of y for the gas consisting of pseudo-particles), Io=[(2-y)/(y-l)]  RT is the 
internal energy due to non-translational degrees of freedom and y is the ratio of specific heats. The 
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moment vector P is defined as 

(3) 

The Euler equations are obtained by taking moments of the Boltzmann equation. The 2D Euler 
equations can be written in the form 

(4) 
au aG, ac, 
d t  a x ,  ax, 
- +- +-= 0, 

where 

U =  

Then 

(Y, F+v, F + v 2  ~ =-+-+- , 
at ax, ax, a F )  au at aC1 a x ,  acz ax, 

where the moments are defined as 

Therefore we see that 

U = ( Y ,  F), Gi=(Y,  uiF), G, = ( Y, v2 F ). (7) 

The KFVS method thus involves two levels, the Boltzmann level and the Euler level, connected 
by the moments. The implementation of the upwind principle for flux splitting is performed at the 
Boltzmann level and then mapped to the Euler level. The wall boundary condition too is 
developed at the Boltzmann level and is based on the specular reflection model of the kinetic 
theory of gases.' s*17*18 It has been shown that an upwind scheme at the Boltzmann level always 
gives an upwind scheme at the Euler 1 e ~ e l . l ~  

2.2. The KFVSfinite volume scheme 

A finite volume, cell-centred KFVS scheme has been developed to simulate the flow over bodies 
of arbitrary shape.I5 For geometrical and adaptive flexibility the scheme has been developed for 
structured and unstructured grids. In order to develop this scheme, we start with the Euler 
equations as moments of the Boltzmann equation, which can be written as 

aF 
Y, -+ " . "> = 0 ( at ax 
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where 

This can be written in integral form as 11 A ( ' Y , ~ + ~ - ~ ) d x , d x , = O  

or 

; j jA< 'Y ,F)dx ldx ,+  ( ' Y , v - g )  dx, dx,=0. (9) 

where A is a two-dimensional finite volume with a boundary given by dA. 
Using the definition of the moments given in equation (6), equation (9) can be written as 

~ j j A d x l d x 2 ~ ~ d l f w  d u , ~ ~ m d u i P F = - ~ ~ A d x , d x 2 ~ ~ d Z ~ m  du, f~mdu2'Yv*-.  aF 
- Q  - m  ax 

(10) 

Using the divergence theorem, the above equation can be written as 

; [IA dx, dx, Jb" d l  

where ds is an element on the boundary and n is the unit outward normal. 
Let us now consider a single finite volume bounded by K sides. Each side s k ,  k = 1, . . . , K, has 

the outward normal nk. Using equation (7) for the left-hand side, equation (1 1) can now be written 
as 

du, j-wm do, ' Y F = - j j a A  ds jOw d l  du, jym do, 'Yv*nF, (1 1) 
- m  - m  

Iw d l  lm du, jw -a, d ~ ,  F, (12) 
au 

IAI-=- 1 
at k = l  0 -a, 

where IAl is the area of the finite volume and I s k [  is the length of side sk. U represents the field 
vector at the centroid of the finite volume. Let be the angle between side s k  and the positive x- 
axis. The normal and tangential velocity components u n k  and u t k  are then related to u1 and u, by 

u ,  = u , ~  cos 6, + Unk sin ek, 02 = v1k sin e k  - unk cosek a (13) 
Using equation (13), the moment vector 'Y defined in equation (3) can be rewritten as 

where 'Yk is now the moment vector for side s k .  Since the Maxwellian velocity distribution is 
invariant under co-ordinate rotation, equation (12) can be written as 
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where Fsk is the Maxwellian written in terms of unk and utkr for side sk. The above equation can be 
further rewritten as 

where 
Gsk = ( yk  9 unk Fsk ) (17) 

As mentioned earlier, the splitting of the fluxes based on the upwind principle is done at the 
Boltzmann level and then mapped to the Euler level. In order to explain this clearly, let us 
consider a triangular volume with sides sl, s2 and s3 .  It may be noted that the analysis given 
below is valid for a finite volume with any number of sides. Figure 1 shows this triangular volume 
1 surrounded by three other similar volumes 2, 3 and 4. 

The fluxes are split on the basis of whether the normal velocity unk is positive or negative. It 
should be noted that unk and t),k represent the molecular and not the fluid velocity. For side s1 we 
can write 

where F,":' denotes the part of the Maxwellian corresponding to unl >O and FZ denotes the part 
of the Maxwellian corresponding to un1 <O. Taking moments of equation (18), 

where CA and Gs; are the split Euler fluxes across side sl .  The upwind principle now determines 
where these fluxes are evaluated. Referring to Figure 1, for side s1 it is necessary to evaluate GA at 
the centroid of triangle 1 and Gs; at the centroid of triangle 2. Similar arguments for sides s2 and 
s3 give 

G s l = [ ~ A l l + ~ G i l 2 *  Gs2=CGs+11+CGs2139 Gs3=[Gs+11+CGs314, (20) 
where [Ci], is the positive flux across side sk evaluated at  the centroid of triangle m. The first- 
order KFVS finite volume scheme can be written using equation (16) as 

where Gsk is given in equation (20), U" is the field vector at  time level n and Ac is the time step. 

Figure 1. Typical triangulation with cell 1 and the surrounding cells 2, 3 and 4 
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The KFVS scheme described above is a finite volume, cell-centred scheme and requires an 
appropriate data structure for implementation on unstructured meshes. An edge/cell data 
structure is used in which the two mesh points forming each edge, as well as the two cells adjacent 
to the edge, are stored in the mesh connectivity matrix. The appropriate flux calculated at each 
edge is sent to the neighbouring cells and the algorithm then requires a loop over all the edges 
contained in the mesh. Boundary edges are identified so that the correct flux is determined. The 
flux at a solid wall is determined by the use of a flow tangency boundary condition which is 
described later. The flux at the far-field boundary is determined by the theory of Riemann 
invariants. 

2.3. The KFVS high-resolution scheme 

and is described below. Implementa- 
tion of this scheme is straightforward for a structured, quadrilateral mesh but requires additional 
thought and effort for an unstructured, triangular mesh. The scheme is first discussed for a 
structured mesh and the extension to an unstructured mesh is discussed later. 

A high-resolution KFVS scheme has been developed' 

Figure 2. Schematic of a structured mesh showing the cells used in the high-resolution scheme 
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A typical structured mesh is shown in Figure 2. From this figure the first-order KFVS scheme 
discussed above will give, for mesh cell 1 

The high-resolution scheme requires cells 6,7,8 and 9, which are known for a structured mesh. 
The flux at any edge sk is now evaluated by extrapolation from the two adjacent cells. Let Dab 
represent the distance between the centroids of any two cells ‘a’ and ‘b’ and Desk represent the 
distance between the centroid of any cell ‘a’ and the midpoint of edge ska The flux G,, is now given 
by 

Fluxes Gs2, G,, and G,, are obtained similarly. This scheme can cause oscillations around the 
shock wave” and is modified by the use of a minmod limiter which is defined by 

The flux GS1 is now given by 

where @ is a factor with a typical value of 1.4. GSz ,  Gs3 and G,, are obtained similarly. 
Figure 1 shows a typical unstructured mesh. Cells 2,3 and 4 are known from the edge/cell data 

structure, but the additional cells needed for implementing the high-resolution scheme for cell 1 
are unknown. The implementation of the high-resolution scheme, as described above for a 
structured mesh, requires that for each edge the two adjacent cells on both sides be known. 
Referring to Figure 2, for edge sl, cells 4 and 1 on one side and cells 2 and 6 on the other side are 
needed. The analogous situation in an unstructured mesh, as shown in Figure 3, requires that for 
edge s,, cells 1 and 4 on one side and cells 2 and 3 on the other side need to be known for an 
appropriate extrapolation of the flow variables. 

The edge/cell-based data structure gives cells 1 and 2 for edge sl. A procedure has been evolved 
for the determination of the other two cells for each edge. The cells adjoining the edge, namely cells 
1 and 2, are identified from the data structure. Then the third vertex of each cell is found, i.e. the 
vertex not contained in the common edge. All cells containing this third vertex are then located by 
a search through all the edges. This locates the cells marked ‘*’ on one side of s, and the cells 
marked ‘+’ on the other side. To now find cell 3, the following method is used. The slope of the 
straight line joining the centre of edge s1 to the centroid of cell 2 is evaluated. The slopes of 
the straight lines joining the centroid of cell 2 to the centroids of all the cells marked ‘*’ are 
then evaluated. The cell with the slope closest to the slope between edge s, and cell 2, is taken to 
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Figure 3. Unstructured mesh showing the cells used for the high-resolution scheme 

be cell 3. Cell 4 is determined in a similar manner and these two 'high-resolution cells' are identified 
for each interior edge. The high-resolution scheme is then implemented in the same way as on a 
structured mesh. 

2.4. Boundary condition at wall 

A flow tangency boundary condition called the kinetic characteristic boundary condition 
(KCBC) has been de~e loped . '~ . ' ~  This is based on the specular reflection model of the kinetic 
theory of gases, according to which the normal component of the velocity of a molecule gets 
reversed after impact with the wall while the tangential component of the velocity remains 
unchanged. The flux for the edge which lies on a solid wall is calculated in a manner similar to the 
calculations for the split fluxes described earlier. 

Let 8, be the angle between the edge s, and the positive x-axis. Referring to equations (14) and 
(17), the flux across s, is 

G w = ( y w ,  vnw F s w ) ,  (29) 

r1 1 

where 

v,, C O S ~ ,  + v,, sine, 
v,, sine, - v,, COSO, 

Lr+(v:,+v,2,)/2 1 
and vt, and v,, represent the tangential and normal components of the molecular velocity. 

Let the velocity distribution function F,, be denoted by F, for molecules which are incident to 
the wall and by FR for molecules which are reflected from the wall. According to the reflection 
model, the two are related by 

Referring to equations (15) and (17), equation (29) is written as 

~w = J: d l  jIa dutw JIa don, y w  vnw ~ s w  
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The velocity distribution function is split into two parts which correspond to molecules 
incident to and reflected from the wall. The above equation is written as 

(33) ) 
0 

~w = joW d l  j dvtw ( 1: dvnw y w  "nw F ,  + 1- dvnw y w  unw F ,  3 

- m  

which, using equation (31), is rewritten as 
0 

d l  1 dutw ( 1: dun, v w  unw ~sw(utw, vnw, I ) +  j dun, y w  onw ~sw(otw, -unw, 1 ) ) .  
-a, - m  

(34) 
Evaluation of this equation gives the flux across the wall in terms of the flow variables as 

where 

Implementation of this boundary condition, which is first-order accurate, does not require the 
use of any dummy cells. 

2.5. Effect of the high-resolution scheme 

The high-resolution scheme seems to be essential for capturing shock waves in transonic 
supercritical flows. This is illustrated for a flow around a NACA 0012 aerofoil with a freestream 
Mach number of 0.75 and an incidence angle of 2". The grid used is shown in Figure 4. Figure 5 
shows the C,-values on the surface of the aerofoil obtained by the first-order scheme and Figure 6 
shows the same values obtained by the high-resolution scheme. The figures show that the first- 
order scheme is unable to resolve the flow features for these cases. This is not so for supersonic 
flows, where it has been observed that there is an insignificant difference between the first-order 
and high-resolution schemes. 

Figure 4. Regular triangulation 
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a 
U 

Figure 5. NACA 0012, M=0.75, cr=2@': C ,  using KFVS first-order scheme 

Figure 6. NACA 0012, M =0.75, LY = 2.0": C, using KFVS high-resolution scheme 
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The effect of using the minmod limiter in the high-resolution scheme is less dramatic. The use of 
the limiter significantly increases the computational effort required and it is essential to investig- 
ate its advantages. The test case is again the flow over a NACA 0012 aerofoil with a freestream 
Mach number of 0.8 and an incidence angle of 1.25" where the mesh used is as before (Figure 4). 
Figures 7 and 8 show the C,-plot and convergence history respectively when the limiter is not 
used and Figures 9 and 10 show the same when the limiter is used. The residual used here is the 
norm of the relative change in the pressure, and the logarithm of this value is plotted. A 
comparison of Figures 7 and 9 shows that the minmod limiter does suppress the preshock spike. 
Figures 8 and 10 show that the use of the limiter dramatically changes the convergence behaviour 
of the KFVS scheme. A large number of iterations have been performed for these computations to 
ensure adequately converged results. 

2.6. Solution process 

The KFVS finite volume scheme described earlier uses explicit Euler time stepping to reach 
steady state. Each mesh cell is advanced by a local time step which is limited by the requirements 
for a stable scheme. The stability of the KFVS method has been determined for a structured 
mesh.' 

The stability condition for the first-order KFVS finite volume scheme can be written as 

.'I 
Figure 7. NACA 0012, M=080, a= 1.25": C, using KFVS without minmod limiter 
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Figure 8. NACA 0012, M=0.80,  a= 1.25": convergence without minmod limiter 
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Figure 9. NACA 0012, M =0.80, a = 1.25": C,  using KFVS with minmod limiter 
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Figure 10. NACA 0012, M =@go, a= 1.25”: convergence with minmod limiter 

A similar analysis for the high-resolution scheme would be quite cumbersome and the 
multiplication of the time step evaluated above by a factor less than unity has been proposed.lS 
A factor of 0 7  has generally been used. 

For unstructured meshes any similar stability analysis is difficult. A rigorous mathematical 
analysis has not been attempted. Instead, essentially the same stability condition has been used as 
given in equation (36), with, of course, the summation on the right-hand side being over three 
rather than four bounding edges for a mesh consisting of triangles. This condition has been used 
for all the results presented in this paper. It is possible that this imposes a stricter limit on the time 
step than is actually needed, but no attempt has been made to investigate this. 

3. MESH GENERATION 

3.1.  Delaunay triangulation 

The automatic triangulation of an arbitrary set of points can be achieved using the Delaunay 
triangulation. Since this method was first proposed for application in CFD,” robust algorithms 
to construct the triangulation in both two and three dimensions have been d e v e l ~ p e d . ~ ~ . ~ ~ * ~ ~  In 
common with other unstructured grid techniques the Delaunay approach offers the advantages of 
flexibility for highly complex shapes and mesh adaptation. 

The triangulation is based upon the concepts of the in-circle criterion. The triangulation is the 
geometrical dual of the Voronoi diagram. This diagram is the construction of tiles in which a 
region is associated with every point in such a way that each region is closer to a point than to any 
other point in the field. The bounding line segments form the Voronoi diagram. If points with 
common line segments are connected, then the Delaunay triangulation is formed. The vertices of 
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the Voronoi diagram are at the centres of the circles passing through three points which form the 
individual triangles. No other points can lie within a circle. The triangulation possesses some 
interesting mathematical properties and ensures the optimally smooth triangulation of an 
arbitrary set of points. 

The approach outlined above can be used in generating two contrasting grid types. Firstly, if 
points from a structured mesh generator are used in the Delaunay algorithm, a regular 
triangulation is obtained. Historically, this was the method first used to provide a mesh around a 
complex shape.” Around each individual component of a configuration a structured set of grid 
points was generated. The global mesh was obtained by connecting together points from all 
component meshes. This approach is utilized in this work since it proves to generate very regular 
and smooth meshes. The above approach is not readily applicable to any arbitrary shape and 
hence a new flexible procedure for automatic point generation has been de~eloped.’~ This 
approach constructs a distribution of points in the interior of the domain which is consistent with 
the boundary point distribution. This approach is also utilized in this work. 

3.2. Mesh adaptation 

Mesh adaptation is an important procedure in numerical flow simulation. It offers the prospect 
of accurate flow field simulations without the use of excessively fine, computationally expensive 
meshes. The implementation of adaptive meshing requires two basic steps. Firstly, the identifica- 
tion of an error or adaptivity criterion which indicates where in the flow field the mesh is deficient 
and requires some modification. Changes in the mesh may be required where the activity is high 
or where the activity is sufficiently low that fewer grid points are required. Secondly, it is 
necessary to use the mechanics of mesh generation to suitably modify the mesh. Most adaptation 
procedures are based upon the equidistribution principle. Throughout the field the product of the 
adaptivity criterion and the local mesh length scale should be constant. Hence in regions of high 
activity the local mesh length scale should be small, whilst in regions of low activity the length 
scale should be large. 

Of the many methods available for mesh adaptationz6 the mesh enrichment technique is fairly 
easy to implement on unstructured meshes and has been coupled with the KFVS solver. This 
technique involves the addition of extra mesh points in regions of high flow gradients. 

The gradient across an edge is computed as 

(37) 

where the flow variable p, the density, has been chosen as the refinement indicator. The edge is 
then divided if I A 1 2 A,, where A, is a specified parameter with a value normally between 0.05 and 
0.2. If refinement occurs, the edge is divided by the insertion of a new point at the midpoint of 
edge E and the formation of two new cells. This formulation requires the interpolation of the 
density from the cell centres to the cell vertices. This proves to provide a better, more consistent 
refinement of the mesh. 

4. RESULTS 

4.1. Williams two-component aerofoil-low subsonic flow 

The first test case considered is the flow over a two-component aerofoil with a freestream Mach 
number of 0 1 5  and zero incidence angle. The mesh used is a regular pseudo-unstructured mesh 
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generated by the triangulation of a set of points around the aerofoil. The flexibility of un- 
structured meshes makes the mesh generation relatively simple. 

The mesh contains 2143 mesh points and is shown in Figure 11. The Mach contours obtained 
by the KFVS method are shown in Figure 12 and the coefficient of pressure on the surface of the 
aerofoil and flap is shown in Figures 13 and 14 respectively. It is seen that the method produces 
smooth contours of flow and surface pressure distributions. 

4.2. NACA 0012 aerofoil-transonic flow 

The case considered now is the supercritical flow over a N A C A  0012 aerofoil with a freestream 
Mach number of 085  and an incidence angle of 1.25". The results are compared with those 
obtained by a Jameson centred scheme.'*' The mesh shown in Figure 15 is used for the first set of 
results shown. This is an unstructured mesh containing 2372 mesh points. The flow contours of 
pressure obtained by the KFVS and Jameson schemes are shown in Figures 16 and 17 
respectively. A comparison of the two shows that the KFVS method generally gives smoother 
flow contours while the Jameson scheme has better captured the shock waves on both surfaces of 
the aerofoil. The coefficient of pressure on the aerofoil surface obtained by the KFVS scheme is 
compared with the Jameson result in Figure 18. The KFVS result shows some oscillations in the 
pressure distribution which are not present in the Jameson result and also shows a slightly 
different shock wave position on the upper surface. 

Figure 1 1 .  Regular mesh, Williams aerofoil 

Figure 12. Mach number contours on regular mesh 
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Figure 13. Pressure coefficient C,, first component 
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Figure 14. Pressure coefficient C,, second component 
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Figure 15. Unstructured mesh, NACA 0012 aerofoil 

Figure 16. Contours of pressure (KFVS) 

Figure 17. Contours of pressure (Jameson) 

This particular test case, with shock waves present on both surfaces of the aerofoil, is ideal for 
the application of mesh adaptivity. The local mesh enrichment technique used is one where mesh 
points are added to regions of high flow gradients. It is reasonable to start with a very coarse 
mesh, which is unable to adequately resolve the features of the flow, and adapt it to a mesh 
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capable of the resolution required. The initial mesh, shown in Figure 19, contains 1182 mesh 
points. The contours of pressure obtained on this mesh are shown in Figure 20. The mesh 
obtained after two levels of refinement is shown in Figure 21. This mesh now contains 2309 mesh 
points. The contours of pressure obtained on this mesh (Figure 22) show a remarkable improve- 

Figure 18. Comparison of pressure coefficient 

Figure 19. Initial mesh 
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ment over the earlier results, with much sharper shock waves captured on both the upper and 
lower surfaces of the aerofoil. 

4.3. Internal pow in a channel-supersonic pow 

In order to test the KFVS flow algorithm for a variety of flow situations, the flow in a channel 
containing a 1075" ramp with a freestream Mach number of 2-0 has been solved. This particular 
case also highlights the effectiveness of mesh adaptivity when used with the KFVS method. 

Figure 23 shows the initial mesh and the flow contours of density obtained. This mesh contains 
446 mesh points with 93 points on the boundary. The solution obtained on this mesh is quite 
poor. Figures 24-26 show the mesh and the corresponding contours of density, after one, two and 

Figure 20. Contours of pressure on initial mesh 

Figure 21. Refined mesh 
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Figure 22. Contours of pressure on refined mesh 

Figure 23. Initial mesh and contours of density 

Figure 24. First refined mesh and contours of density 
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Figure 25. Second refined mesh and contours of density 

Figure 26. Third refined mesh and contours of density 

three levels of refinement respectively. The mesh contains 943 mesh points with 115 points on the 
boundary after the first refinement. The number increases to 1576 mesh points with 129 points on 
the boundary after the second refinement and to 2285 mesh points with 136 points on the 
boundary after the third refinement. The improvement in the resolution of the flow after each 
refinement is apparent from the figures. 

The theory of compressible flow gives an analytical solution for this flow, which makes it 
possible to compare the computational results with theoretical predictions. The necessary charts 
and tables required to determine the analytical solution are to be found in any text on 
compressible fluid dynamics (e.g. Reference 27). Figure 27 compares the contours of density 
shown in Figure 26 with the theoretically determined expansion and shock wave angles. As 
shown, the agreement between theory and computation is quite good. 

The evaluation of the theoretical angles shown in the previous figure necessarily involves the 
determination of the Mach number as well. Thus the computed Mach number at various points 
in the flow field can also be compared with theoretical predictions. The unstructured mesh used 
makes it extremely difficult to obtain the distribution of Mach number along any cross-section of 
the channel. However, the Mach number distribution on the solid wall can be easily obtained. 
Figure 28 shows the variation in wall Mach number in the region of the upper wall where the 
oblique shock wave is reflected back into the flow. It is seen that the computed Mach number 
downstream of the reflection point is very close to the theoretical prediction. The computation 
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Figure 29. Mach number variation over ramp 

also gives a relatively narrow region in which the Mach number vanes from its upstream to its 
downstream value. Figure 29 shows the variation in wall Mach number along the lower wall from 
a point upstream of the foot of the ramp to a point downstream of the top of the ramp. Here the 
computed Mach number is seen to agree quite closely with the theoretical value, except in the 
region downstream of the expansion fan where there is a noticeable difference. 

5. CONCLUSIONS 

The KFVS finite volume schemeI6 has been extended for use with unstructured meshes. The 
algorithm has been applied to different geometries and over a range of Mach numbers. The 
incorporation of mesh adaptivity, using a local point enrichment method, substantially improves 
the quality of the solution. The results obtained using this scheme generally compare favourably 
with those obtained using a Jameson scheme. The importance of the high-resolution scheme has 
been clearly demonstrated for subsonic and transonic flow fields. 
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